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Abstract. A procedure is developed that, in two iterations, solves the
hyperbolic Kepler's equation in a very efficien. manner, and to an

i -20 . .
accuracy that proves to be always better than 10 (relative truncation
error). Earlier work on the elliptic equation has been extended by the
development of a new procedure that solves to a maximum relative error

of 10714,

1. Introduction

In an earlier paper (Odell and Gooding, 1986), we considered the
classical equation of Kepler for elliptic orbits, and recommended two
particular procedures for its solution. This paper was a greatly
shortened version of the authors' monograph (Gooding and Odell, 1985),
and all references to our 'previous work' in the present paper should be
taken to cite the two references just given. To complement the previous
work, we have now studied the hyperbolic equation, and the present paper
is a shortened version of the recent RAE report by Gooding (1987).
Though there is a very extensive literature on the elliptic equation,
several papers having appeared since our previous work, little has been
published on the hyperbolic equation. Burkardt and Danby (1983) con-
sider it briefly, before passing to a generalized equation expressed
in terms of universal variables, whilst other authors, such as Bergam
and Prussing (1982), only consider hyperbolic orbits in the context of
the universal (generalized) equation.

The use of universal variables is aesthetically very attractive

and we discussed the universal equation briefly in our previous work,

——
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referring in particular to the recent paper by Shepperd (1985). Since
then, one of us (Gooding, 1989) has been studying the use of universal
elements in conversion algorithms (to and from position and velocity),
but a conclusion of that study is that the best way to proceed, inside J
the relevant algorithm, is still to solve the elliptic equation, the
hyperbolic equation, or Barker's equation, as appropriate.

The hyperbolic Kepler's equation is
e sinh H-H = Moo, D)
where e (eccentricity) and Mh (hyperbolic mean anomaly) are assumed
known, and H (hypesbolic eccentric anomaly, often denoted by F ) is
to be determined. Since the range of e is from unity (rectilinear

hyperbolic orbit) to infinity (uniform linear motion, for zero attrac-

tive force), there is some advantage in rewriting equation (1) as

sinh H - g = L, (2)
where

g = 1l/e , L = Mh/e H
we also define ﬁ
g = 1-g .

Later we shall find further advantage in reformulating the equation so

that sinh H , rather than H , 1s the quantity to be determined.

Our approach to the iterative solution of equation (1), or equiv-
alently (2), has been to adhere as far as possible to the philosophy
underlying the final procedure that we previously recommended. In par-
ticular, we have sought a combination of starting formula and iteration

process accurate enough for the resulting procedure to have always met a




given accuracy goal after a fixed small number (preferably two) of
iterations; assuming a smoothly continuous starter over the (e, Mh)-
data space, the output (H or sinh H) would then also be smoothly con-
tinuous. ('Smooth continuity' is meant to be synonymous with the term
'smooth portability' discussed in the previous work.) The accuracy goal
was expressed as a ceiling for the relative error in the output quan-
tity, the ceiling of 10-13 being selected; as in the previous work, this
was related to the computer used for most of the work, but the goal has
not been the same, since for the elliptic equation the value of
10-13(rad) had been an absolute-error ceiling.

Section 2 describes two procedures that solve for H , and
Section 3 describes two procedures that solve for S ( = sinh H). As
the previously-developed iterator (described as 'HN' and providing
quartic convergence) was incorporated in all four procedures, Sections 2
and 3 mainly provide descriptions of the starters. Section 4 is devoted
to computer implementation and results for the last (and best) of the
four procedures, and Section 5 describes a new procedure developed for
the elliptic equation, such that the relative-error goal used for the
hyperbolic equation can be met. Also included in Section 5 is a
discussion of an alternative iteration method, due to Laguerre and
recently recommended by Conway (1986); though it only provides cubic
convergence, it is much more robust than our standard iterator, so it
comes into its own when a good starter is not available.

The recommended hyperbolic procedure meets the ].0-13 goal with the
greatest of ease, since it provides 20-decimal-digit accuracy in all
cases. The new elliptic procedure does not do so well, the accuracy

provided being 14 digits.
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2. Procedures solving for H

Our initial approach was to follow EKKPL2 (the final procedure developed
in the previous work) as closely as possible. The starting formula for
EKEPL2? was based on an interpolation between starters suitable for

e =0 and e =1, the latter (EOI) being a composite starter smoothly b
patching together a cube-root expression and a bilinear expression.

Thus to solve (2), we required a special starter, for g=1,

H . >
oL

after which the overall starting formula would be given by

-1
HO = g H01 + 81 sinh "L , 3)

since sinh ‘L {is the limiting solution of (2) for g =0 . We assume,

for convenience, that Mh is positive and that, as in the previous

work, HOl has a pair of components that are to fit smoothly together at
M, = 1/6 . Then a suitable definition is
I's
(e )1/3 1 0< M < 1/6 (4a)
H = h {
0l
1in Z(Mh +1/3) + 1 if Mh > 1/6 . (4b)

When the overall starter was coupled to the standard iteration
process, however, the resulting procedure gave somewhat disappointing
results. In particular, the accuracy after two iterations was much
worse than for EKEPL2. As shown by the detailed analysis of the

(hyperbolic) procedure by Gooding (1987), 1in fact, the guaranteed u

accuracy 1s only seven decimal digits (relative truncation error), so it
was necessary to extend the procedure to a third iteration. This led to
an accuracy of at least 26 digits guaranteed, compatible with expec-
tatfon on the basis of quartic convergence, but the need for a third
iteration detracted from the efficiency of the procedure. The procedure

was in any case less efficient than EKEPL2, since equation (4b) cannot
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b
be evaluated as cheaply as a bilinear expression. But it was a third '
defect of the procedure that was of most interest, and this is described
in the next paragraph; the defect is also suffered by EKEPL2, which is
why further attention was in due course given to the elliptic equation
as well as the hyperbolic.
For small values of Mh , equation (2) gives .
B+ 6g -6l = 0, () )

and this 1s the basis for (4a), which is clearly an excellent starter
when g = 0 . For g1 >0, }owaver, the neglect of the second term of
(5) can lead to a serious overestimate of H , which the interpolation
by (3) does little to remedy when 8, is only slightly greater than
zero (e only slighicly greater than unity). The overestimation is never
so gross as to affect convergence adversely, so long as this statement
is interpreted in terms of truncation error (and this applies to rela-
tive error, not just absolute error), but the effect on rounding error
is another matter entirely, as shown in the detailed analysis. Even
here there is no problem with absolute error, because the iterator works
so well, but relative rounding error can only be reduced at a rate (per
iteration) deiermined by the éomputer word~length.

As already remarked, the defect of large relative rounding error
applies to EKEPL2, from the previous work, as well as to the hyperbolic
procedure being described. It was not observed before, however, because

-

the previous analysis was conducted almost entirely in terms of ablsoluc

&

error, this being possible because of the periodic nature of E ~ M for
the elliptic equation; thus absolute error is bounded over the full
(infinite) range of M . In consequence, we did not look at very small

non-zero values of M ; had we donme so, the problem would have come to

C - .




light in the plotting of rounding error in Fig 6 of Odell and Gooding
(1986).

With a view to eliminating the defect just described, and in the
hope of devising a procedure for which two iterations would always
suffice, we abandoned our initial approach to the solution of (2), in
favour of one based on the approximation (5)}. The new approach, as in
our previous consideration of the approximating cubic for the elliptic

equation, follows the notation of Ng (1979).

We define HOO

small Mh and arbitrary g , given by the (unique) solution of the

as the starter, which 1s a good approximation for

equation (cf (5))

H.. + 3q H 2r = 0, (6)

3 -
00 00
where q = Zgl and r = 3L . As before, we note that (6) is the
classical cubic equation, for which we can do better than Ng by

expressing the solution with a single cube root, as

Hyy = s - q/s , (7)

where (assuming Mh , and hence 1 , to be non-negative)
1/3
2 3
s =[(r +q)¥+r] .
This expression for HOO is still noi cptimal, however, as unnecessary
rounding error will be experienced when 52 = q ; some algebraic
manipulation gives us the optimal solution as
2
H - (8)

00 2+ q+ (q/s)2

Since sinh—lL is appropriate, as a starter, for large values of

Mh (just as it was for small values of g ), we can use () as the




basis for an overall starter. Thus HO is defined, by use of weights

Mh and 1, as
B = (M sinh 'L + & )/(‘ + 1) (9)
0 h 00/’ My .

On coupling equation (9) to the usual iterator, we have a pro-
cedure that is free of the deficiencies of the first procedure. 1In
particular, there is no rounding-error problem, and the maximum relative

error (due to truncation) after two iterations is only 7 x 10~
3. Procedures solving for S ( = sinh H)

The development of the second procedure of Section 2 might have ended
our study of the hyperbolic equation, but an alternative approach was
thought worth looking at. 1In this, equation (1) is not Jjust rewritten

as (2), but more significantly rewritten as

S -gsinh’s = L , (10)

where

S = sinh H . (11)

Then S , instead of H , is the quantity to be solved for.

There are at least two advantages in solving equation (10), as
opposed to (1) or (2). First, it is more efficient, since the only use
to be made of H 1is normally via sinh H and cosh H ; moreover, there
{s no loss of accuracy in deriving cosh H as v (1 + SZ) , la complete
contrast to the loss that can occur if cos E 1is derived from sin E
Secondly, there is a gain in precision with the use of S , rather than
H , for large values of | S] ; thus the evaluation of the composite

sinh[sinh_l] function, like the composite exp(ln) , cannot be relied

caniifbe,
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upon to be the identity function when the argument is large. It is to
be noted, also, how great is the resemblance between the reformulated
equation and the standard elliptic equation, since g has the same
range as e for an ellipse, whilst sinh-lx , like sin x , expands as
x - x3/6 + O{XS) . As a final introductory point, we remark that the
change of variable from H to S 1Ls bound to affect the operation of
the iteration process; thus if we chose to solve both equations (1) and
(10), with starters (HO and SO) related by (11), this relation would
not be preserved during iteration.

The first approach to a starter for equation (10) was based on the
direct modification of the successful solution of equation (2) via the
cubic equation (6). Thus we solve (6) for SOO , rather than HOO , if

we replace the definitions of q and r by

q = Zgl/g and r = 3L/g . (12)

In view of the possibly-zero denominators in (i2), however, it is better

if we write the cubic equation in the homogeneous form

3
a8,y +3bS,=-2 = 0, (13)
where a =3 , b = 2g1 ( =gq) and ¢ = 3L ( = gr)

From 500 , the starter appropriate to small L (still, for con-
venience, assumed positive), we require the extension to an overall

starter, in analogy with (9). The most obvious analogy seemed to be

with So given by

2
. L+ 1) ,
Sy (L” + soo)/( + 1

but this gave disappointing results. Afte~ some experimentation, it
was found that the starter defined by

2
S0 = S00 + L /(L +5) (14)

- —




worked much better, the constant, 5, having been determined

empirically. The results remained worse, rather than better, than those
derived using the second procedure for H , however, so it was decided
to investigate an entirely different type of starter.

One of the possible starters (the eleventh) discussed in our
previous work was a very complicated one, constructed on the rationale
that it should have the right form in the region of awkward convergence,
whilst at the same time matching the formal e-series expansicn (of the
solution to the elliptic equation) to terms of order e3. By 'having
the right form' etc, we just meant that, for e =1 and small M , the
starter should behave like 3/Zﬁ , since the more stringe¢it constraint
(imposed by the cubic-equation approximation, cf(5), for e # 1) would
then be met by the series matching. It was decided to apply this
rationale to (the hyperbolic) equation (10), but to develop the desired
new starter in a straightforward and systematic manner by baslng it on
Lagrange's expansion theorem (Whittaker and Watson, 1940).

The objective may be summarized as being an expression of the form

1/3 1

Sy = L+gB sinh "L , (15)

0
where B =1 + terms in g , gz , etc as required. Clearly

B = F(S)/F(L) , (16)

-3
where F 1s the function (sinh ')  (a somewhat unfortunate notation as

“he tv) negative signs have different meanings). We will use the
xpansion theorem to express F(S) as a function of L (with parameter
g ), and to help in this we define £ = sinh-lL . Then the theorem

glves
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~ n
F(S) = F(L) + :E: %T ™ V™ Ly (17)
n=]
where D is the operator d/dL .
On performing the necessary differentiations and dividing by

F(L) , we find that (17) leads to

B o= (1-g0)° + 370 ’(3Lt - gh) + g2a?(1 - 2L2)) +o(gh) . (s

2
where A = sech £ . But B has to behave like £ /6 , when g = 1 and
% 1is small; so we give up the formally-accurate g3 term in (18),

writing instead
3 2 3 3
B = (1 -gA) +g“2LA" (9 - 8g)/6 +0(g") - (19)

Substitution of (19) in (15) gives the required starter. Coupled
with the usual iteration process, it works so well (as we will see in
the next section) that the resulting procedure constitutes our
unqualified recommendation for use in solving the hyperbolic Kepler's

equation.
4. Implementation and Results for the Recommended Procedure

The Fortran-77 function SHKEPL has been written to implement the
recommended solution procedure. Its arguments are L and g8 » and it
is listed in Appendix A. The second argument is g rather than g ,
to minimize rounding error in the vicinity of (g,L) = (1,0), when

S -8 sinh-IS has to be computed by the special subordinate function
SHMKEP, listed in Appendix B; SHMKEP operates in the came way as the
function (EMKEPL) we gave before, except that it is rather more
efficient since S - g sinh 'S {s computed as g 5 + g(S - sinh”ls)

rather than (S - sinh_ls) + gl sinh—ls . Two other (non-standard)




subordinate functions are used by SHKEPL: DCUBRT for obtaining a cube
root; and DASINH for the inverse sinh .

The computer used for testing SHKEPL has mainly been a PRIME 750,
as in the previoys study, but a Cray 1S was used for the most accurate
results. Though the input for SHKEPL is actually L and g > the test
data consisted of a wide range of values for H and e , H being the
source for the reference value of S , from which the nomirally input L
was obtained via equation (10). From the value, S, , extracted froum

i

SHKEPL after 1 iterations, we have the relative error, ci , given by

g, = (Si - 8)/'s . (20)

i

For each e , the range of H extended from 10_30 to IOA, at a
fixed geometric interval, the maximum value of I 01 I obtained being a
measure of the accuracy of SHKEPL with 1 i{iterations. (For normal use,
and as listed in Appendix A, 1 15 fixed at 2, but the values O and 1
were also of interest.) A very wide range of e was tested, extending
from unity to 10100.

Figure 1 provides plots of logl omax, against log e , for
{ = 0 (starter), 1 and 2 (standar& SHKEPL). The range of e , here,
extends only from 1 to 10, as the accuracy is so good for higher values
of e . The accuracy is, in fact, striking, since it is evident that
SHKEPL gives at least 20 significant figures correct (for §) imn all
circumstances. If the function 1s restricted to a single iteration, the
number of significant figures reduces to five - this is compatible with

the quartic nature of the iterator.
5. The Elliptic Equation revisited

In our previous study we established the merits of two particular

procedures for solving the standard Kepler equation




E-esinE = M . 1)

The second (and more accurate) of these procedures (EKEPL2) combined a
number of desirable features, as described in our papers; in particular,
the incorporation of a bilinear formula in the starter made it extremely
efficient. We failed to observe, however, Fhat EKEPL2 suffers from the
relative~-rounding-error defect remarked on for the first procedure of
Section 2. This may be regarded as a very minor weakness, which it does
not seem possible to remedy efficiently; for ccmpleteness, however,

we describe a procedure, modelled on the sacond procedure of Section 2,
that is free of this defect and retains all the merits of EKEPLZ other
than efficiency. We also take the opportunity to make some comments on
the application of Laguerre iteration to Kepler's equation, in the

light of the recent paper by Conway (1986).

We have seen, in the context of the hyperbolic equation, that the
relative~rounding-error defect could be eliminated by use of a cubic
approximation, for small H , valid for all e and not just e =1 .
We adopt the same policy for the elliptic equation, requiring to solve

the equation, ef (8),
Egg + 3aEpy = 2t = O (22)
given in our previous work, where now
q = 2e1/e and r = M/e , with e = 1 - e

Again we prefer to solve the homogeneous equation, parallel to (13); the
function, DCBSOL, for doing this has (1like DCUBRT and DASINH) been listed

by Gooding (1987).

-—M




The solution of (22) for EOO provides a suitable starter for
small M (> 0) and any e (0 < e < 1) , so for arbitrary M over the
range [0,7] we use the formula

2
M + (r - M)EOO

By, = ————2 . (23)

Coupled to our usual iterator, this led to a new procedure, EKEPL3, of
arguments (as for EKEPL] and EKEPL2) M and e . To minimize rounding
error in the awkward region where (e,M) = (1,0), the second argument was

then changed to e, and the resulting procedure given the name EKEPL.

1
The Fortran-77 function EKEPL is listed in Appendix C; it uses the
subordinate function EMKEP in the awkward region, but this function is
so like the original EMKEPL that it is not listed here.

Figure 2 provides, for the solution procedure EKEPL, plots of

log| €

|
max

where e, = (B - EY/E , (24)

=0-275 (4 0.253). To

for a (decreasing) range of e from unity to 10
provide a comparison with the old procedure (EKEPL2), the corresponding
curve for that procedure 1s also given, for the definitive 1 =2 . It
is seen that the new procedure does better, except when e > 0.95

(log e > -0.023) , and there is an apparent paradox here, since it was
for precisely the high values of e (approaching unity) that EKEPL2 was
defective. The paradox is easily resolved, however, since the defect
relates to rounding error, whereas Figure 2 only covers truncation
error: for e =~ 1 , both procedures give very small truncation error
when M 1s small (ie in the 'awkward region'!) and the curves of

Figure 2 are determined by 'macroscopic' values of M ; it is a tribute

v_7**ﬁ,‘,ﬁv_ﬁ_“<*_*_‘w*___________________________________---llIl;-IlllIllllllllllllllllllll...lll




to the efficacy of the bilinear function, used in EKEPLZ, that under
these circumstances EKEPL2 does so much better than the new EKEPL.
Figure 2 indicates that the accuracy for EKEPL is never worse than
about 14 significant figures. Though good, this is inferior to the
accuracy of SHKEPL. Since SHKEPL uses a starter based on Lagrange's
expansion theorem, it might be thought that, as for the reformulated
hyperbolic equation, we would do much better via this theorem than via
the cubic-equation-based starter. This is not so, however; results for
a procedure based on the expansion theorem, derived in exactly the same
way as for the hyperbolic equation, are actually worse than those given
by EKEPL. Despite this, we give the equations corresponding to (15) and

(19), for completeness; they are

E, = M+ e 13 sin

and

B = (1-ecosM)® & e? stn’M (9 - 8e)/6 + 0(e3] .

We now discuss the merits of replacing our quartic generalized-
Newton iteration formula by one of the Laguerre formulae, which, though
they only give cubic convergence, are shown by Conway (1986) to be much
more robust than the Newton formulae.

The general laguerre formula, for iterating to a root of the

equation f£(x) = 0 , may be written

§ = - NE . (25)
f'{x + /[ - 1% - N - 1)ff"/f'2]}

where § = x and f 1is shorthand for f(xi-l)' etc; N may be

17 Xi-1
identified as the degree of the polynomial that is matched to f . Thus
N 1is normally taken to be a small integer (> 2 , since for N = 1 the

formula reduces to the Newton—-Raphson formula, of only quadratic

S S |




convergence), but it does not have to be restricted in this way - the
formula is sound with N large, infinite, or even non-integral. Conway
expresses the denominator of (25) as f' t /[(N - l]zf'2 - N(N - Lyfer]
this provides a result in the (unrealistic) circumstance that f' =0 ,
but at the expense of the sign ambiguity (resolved, when f' # 0 , by
giving the square root the same sign as f' ).

There would be no advantage in substituting one of the Laguerre
formulae for our standard iterator in either of the procedures EKEPL2 or
EKEPL, or in any of the procedures developed for the hyperbolic
equation, since the starters in all these procedures are good enough for
the full (quartic) power of the existing iterator to operate. For
EKEPL]1 it is another matter, however, since the possibly slow
convergence here (infinitely slow in the limit) is completely overcome
with one of the Laguerre formulae. The advantage of iteration by (25)
is even more marked with the starter EO = M , for which the Newton
formulae can lead to divergence.

Conway demonstrates the success of the Laguerre iterator in
solving Kepler's equation, taking the arbitrary value of N =5 in
equation (25). This value is essentially a compromise, since in
straightforward cases convergence is usually more rapid with W
infinite. In the awkward region (where the Newton formulae fail or are
slow), however, much the best results are given with N = 3 | and the
reason for this has been given by Gooding (1987). The essence of the
matter Is the following: for a function approximating to the polynomial
x® = A ( > 0), and an iteration step from a gross overestimate of the
n'th root, the only value of N , in (25), that makes the step a
quadratic (as opposed to linear) ome is N = n ; for Kepler's equation,
the appropriate value of n is 3, so that N = 3 {is the natural

chofce. What happens in practice, using N = 3 and a poor inmitial

. -



value (and assuming an awkward-region problem still), 1is that iteration
steps are initially quadratic; the process than slows down for a step or
two, but finaily homes in with the full rapidity of its nominally cubic
nature. When the starter is Eo = M , which underestimates E ,
convergence seems to be marginally better if the first step is taken
with N infinite, before switching (because El then overestimates

E, M being small) to N =3 . This is of particular significance,

since the first step then has the simple analytical outcome

E = M+ e sin M . (26)

V(1 - 2e cos M + ez]

The right-hand side of (26) is simply the starter for EKEPLl; it is an
attractive formula, and was first used by Brown (1931).

The conclusions in regard to the Laguerre formulae are as follows.
When a good starter is available, they give no advantage. When the
starter is poor, on the other hand, there is an immense advantage to be
had, especially with N = 3 . The impact on our previous work is that
the procedure EKEPLL is greatly improved if the Halley iterator is

replaced by the Laguerre iterator with N = 3 .
6. Conclusion

We have sought to complement our previous work, on Kepler's (elliptic)
equation, by applying the same philosophy to the hyperbolic equation.

A number of solution procedures were developed during the new work, but
one of these seems superior in all respects and we unreservedly
recommend {t. It is based on a reformulation of the equation, such that
sinh H rather than H (hyperbolic mean anomaly) is determined
directly; implemented in Fortran-77 under the name SHKEPL, it is listed

in Appendix A.
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The procedure SHKEPL operates with a starting formula derived by
use of Lagrange's expansion theorem and with the quartic iteration
process developed in our previous work. Its accuracy is such that, in
the absence of rounding error, two iterations (built-in) should give 20
decimal digits correct in all cases. The effects of rounding error have
been held to a minimum, such that at most one (decimal) digit of
precision should be lost when the computer's word-length does not exceed
20 digits.

During the study, it was recognized that a particular relstive-
rounding-error defect, identified in the first procedure developed,
would also apply to the more accurate of the two solution procedures
recommended for the elliptic equation. Though it is scarcely con-
ceivable that the defect could be of consequence in practice, we have
developed an alternative procedure, of comparable accuracy but not so
efficient; given the name EKEPL, it is listed in Appendix C. The
comments of the preceding paragraph (on SHKEPL) apply to EKEPL, except
that the nominal worst-case accuracy (after two iterations) is only
14 digits.

For the elliptic equation, which has to be solved so much more
ofren than the hyperbolic equation, we recommend all three solution
procedures (the two old ones, EKEPL1 and EKEPL2, and the new one, EKEPL)
as being appropriate in different circumstances. A significant
improvement in the least sophisticated of them (EKEPLl) can be made,
however, 1if the Halley iterator is replaced by thc Laguerre iterator
with N =3 .

We have not produced a 'universal procedure', for the universally
formulated Kepler's equation, because, in spite of the mathematical
elegance of such a formulation, we regard it as of little practical

value. For numerical work that is accurate and efficient, it will always

e Etee — - v
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be necessary to solve different equations for the ellipse, parabola and
hyperbola. However, this in no way hinders the development of outwardly
universal algorithms for conversion between position and velocity, on
the one hand, and a universal set of orbital elements, on the other;
such conversion algorithms constitute the subject matter for the com-
panion paper (Gooding, 1989).

In the context of universal computation, we wish to end with a
remark on the recent response by Danby (1987) to our previous comment
(0dell and Gooding, 1986) on the disadvantage of using the Stumpff
function, S(x) , when x corresponds to a multirevolution angle in
an elliptic orbit. As he observes, the computation must then be based
on recurrence formulae, after the angle has heen reduced (by factors
of 4) to a suitable magnitude. It is unfortunate that three of his
four recurrence formulae, (16), are incorrectly stated, the correct

versions being:~

2
colsx) = 2[eqx)l ~1 ¢ (4x) cgx)e1x)

2
cp(ax) = ey (01, c3(4x) = 1 lez(x) + ey (x)ez(x)]

Considering just the first of these relations, we see that when-
ever cp(x) 1is close to unity, in particular while |x| is small, the
rounding error will be roughly quadrupled in each application of the
formula. The build-up will not be as rapid as this all the way from

x = 107 to 106 (to follow Danby's example), but the overall effect

will still be the loss of more than three decimal digits in c0(106)

3 rad (because

If cos E 1is evaluated, on the other hand, with E = 10
X = EZ) , the intrinsic loss (from storage of E 1itsalf) is at least
a digit less. Danby'’s technique is certainly viable (a much more rapid
build~up of rounding error might have been expected intuitively), but

how much simpler and more efficient to recognize an elliptic orbit as

such, and apply old-fashioned range-reduction!




C1

c2

Appendix A
THE SHKEPL PROCEDURE

DOUBLE PRECISION FUNCTION SHKEPL (EL, G1)
EQUATION EL = SHKEPL + (Gl - 1) *DASINH(SHKEPL),
WITH G1 IN RANGE 0 TO 1 INCLUSIVE, SOLVED ACCURATELY.
IMPLICIT DOUBLE PRECISION (A-~H,0-2)
PARAMETER (SW=0.5D0, AHALF=0.5D0, ASIXTH=AHALF/3DO,
1 ATHIRD=ASIXTH*2DO0)
s = EL
IF (EL.EQ.0DO) GO TO 2
STARTER BASED ON LAGRANGE'S THEOREM
G = 1D0 - Gi

CL = DSQRT(1D0 + EL*#*2)

AL = DASINH(EL)

W = G**2*AL/CL**3

S = 1D0 - G/CL

S = EL + G*AL/DCUBRT(S**3 + W*EL*(1.5D0 - G/0.75D0))
TWO ITERATIONS (AT MOST) OF HALLEY-THEN~NEWTON PROCESS

DO 1 ITER=1,2

S0 = $*S

S1 = SO + 1D0

S2 = DSQRT(S1)

S3 = S1#*s2

FDD = G*S/S3
FDDD = G*(1D0 - 2D0*S0)/(S1*53)
IF (ASIXTH*SO + Gl .GE. SW) THEN

F = (S - G*DASINH(S)) - EL
FD = 1D0 - G/S2
ELSE

F = SHMKEP(G1, S) - EL

FD = (S0/(S2 + 1DO) + Gl1)/82
END IF
DS = F*FD/(AHALF*F*FDD - FD*FD)
STEMP = S + DS
IF (STEMP.EQ.S) GO TO 2
F = F + DS*(FD + AHALF*DS*(FDD + ATHIRD*DS*FDDD))
FD = FD + DS*(FDD + AHALF*DS*FDDD)
§ = STEMP - F/FD
SHKEPL = S
RETURN
END

——



Appendix B
AN UNSOPHISTICATED SHMKEP PROCEDURE

DOUBLE PRECISION FUNCTION SHMKEP (Gl, S)
ACCURATE COMPUTATION OF S - (1 ~ G1)*DASINH(S)
WHEN (G1, S) IS CLOSE TO (0, 0)

IMPLICIT DOUBLE PRECISION (A-H, 0-2)

G = 1D0 - Gl

T = S/(1D0 + DSQRT(1DO + S*S))

TSQ = T*T

X = S*(Gl + G*TSQ)

TERM = 2D0*G*T

TWOIl = 1DO

TWOI1l = TWOI1l + 2DO
TERM = TERM*TSQ

X0 = X

X = X - TERM/TWOI1
IF (X.NE.X0) GO TO 1
SHMKEP = X

RETURN

END
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Appendix C
THE EKEPL PROCEDURE

DOUBLE PRECISION FUNCTION EKEPL(EM, E1)
KEPLER'S EQUATION, EM = EKEPL - (1 - E1)*DSIN(EKEPL),
WITH E1 IN RANGE 1 TO 0 INCLUSIVE, SOLVED ACCURATELY
(BASED ON EKEPL3, BUT ENTERING El1l NOT E)
IMPLICIT DOUBLE PRECISION (A-H,0~Z)
PARAMELER (PI=3.14159265358979323846264338328D0, TWOPI=2D0*FI,
1 PINEG=-PI, SW=9.25D0, AHALF=0.5D0, ATHIRD=AHALF/1l.5D0)
RANGE-REDUCE EM TO LIE IN RANGE -PI TO PI
EMR = DMOD(EM, TWOPI)
IF (EMR.LT.PINEG) EMR = EMR + TWOPI
IF (EMR.GT.PI) EMR = EMR - TWOPI

EE = EMR
IF (EE) 1,4,2
EE = -EE

(EMR IS RANGE-REDUCED EM & EE IS ABSCLUTE VALUE OF EMR)
STARTER BY FIRST SOLVING CUBIC EQUATION
E = 1D0 - E1
W = DCBSOL(E, 2DO*El, 3DO*EE)
EFFECTIVELY INTERPOLATE IN EMR (ABSOLUTE VALUE)
EE = (EE*EE + (PI - EE)*W)/PI
IF (EMR.LT.ODO) EE = -EE
DO TWO ITERATIONS OF HALLEY, EACH FOLLO}ED BY NEWTON
DO 3 ITER=1,2
FDD = E*DSIN(EE)
FDDD = E*DCOS(EE)
IF (EE*EE/6DO + E1 .GE. SW) THEN
F = (EE - FDD) - EMR
FD = 1DO - FDDD
ELSE
F = EMKEP(E1,EE) - EMR
FD = 2DO*E*DSIN(AHALF*EE)**2 + El
END IF
DEE = F*FD/ (AHALF*F*FDD - FD*FD)
F = F + DEE*(FD + AHALF*DEE*(FDD + ATHIRD*DEE*FDDD))
TO REDUCE THE DANGER OF UNDERFLOW REPLACE THE LAST LINE BY
= FD + AHALF*DEE* (FGD + ATHIRD*DEE+FDDD)
FD + DEE*(FDD + AHALF*DEE*FDDD)
EE + DEE - F/FD
IF REPLACING AS ABOVE, THEN ALSO REPLACE THE LAST LINE BY
EE = EE - (F ~ DEE*(FD - W))/FD
RANGE-EXPAND
EXKEPL = EE + (EM - EMR)
RETURN
END

W
FD
EE

o
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